Network UPS Tools Developer Guide

Russell Kroll, Arnaud Quette, Charles Lepple, Peter Selinger, Jim Klimov and NUT
project community contributors

Network UPS Tools Developer Guide

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

2.8.2

2024-04-01

Some changes to docs and recipes, libnutscan
API and functionality. Added nutconf (library and
tool). Fixed some regressions and added
improvements for certain new device series.

JK

2.8.1

2023-10-31

Some changes to API, docs and recipes, in
particular to simplify local builds and tests (e.g. to
help end-users check if current NUT codebase
trunk has already fixed an issue they see with a
packaged installation). Revived NUT for
Windows effort, further improved other OS
integrations. NUT became reference for "UPS
management protocol”, Informational RFC 9271.
Documentation files refactored to ease
maintenance. More drivers and new driver
categories introduced.

JK

2.8.0

2022-04-26

Change of maintainer. Many changes to API,
docs (both style and content), and recipes, with a
stress on non-regression test-ability, run-time
debug-ability, general codebase maintainability,
as well as OS integrations (notably
nut-driver-enumerator for systemd and SMF
service instance maintenance). Added a lot in
area of Cl support and documented pre-requisite
package lists for numerous platforms, and Cl
agent set-up. Added libusb-1.x support and
many new driver categories (and drivers), and
daisychain device connection support. Instant
commands enhanced with TRACKING to enable
protocol-based waiting for completion of a
particular INSTCMD or SET operation.

JK

274

2016-03-09

NUT variables namespace updated, in particular
for outlet groups, alarms and thresholds, ATS
devices, and battery.charger.status to supersede
CHRG and DISCHRG flags published in
ups.status readings. NUT network protocol
extended with NUMBER type; some API
changes.

AQ

2.7.3

2015-04-22

Documentation revised, including some API
changes. Added NUT DDL links. NUT variables
namespace updated.

AQ

Network UPS Tools Developer Guide

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

272

2014-04-17

The nut-website project was offloaded into a
separate repository. FreeDesktop HAL support
was removed (obsoleted in GNOME consumer).
Introduced nutdrv_atcl_usb driver.

AQ

2.7.1

2013-11-19

NUT source codebase migrated from SVN to Git
(and from Debian infrastructure to GitHub source
code hosting). jNut binding split into a separate
project. Introduced libnutclient (C++ binding),
al175, apcupsd-ups and nutdrv_qgx drivers,
Mozilla NSS support for simpler licensing than
OpenSSL, and a newer apcsmart
implementation. Documentation support
enhanced with a spell checker, contents
massively updated to reflect project changes.

CL

2.6.5

2012-08-08

New macosx-ups driver, new implementation of
mge-shut driver. NUT variables namespace
updated. Docs cleaned up and revised.

AQ

2.6.4

2012-05-31

New NUT network protocol commands (LIST
CLIENTS, LIST RANGE and NETVER), and
socket protocol commands (ADDRANGE,
DELRANGE). NUT variables namespace
updated. Introduced nut-recorder tool.

AQ

2.6.3

2012-01-04

No substantial changes to documentation.

AQ

2.6.2

2011-09-15

Introduced nut-scanner tool and nut-ipmipsu
driver, systemd support, and a new apcsmart
implementation.

AQ

2.6.1

2011-06-01

Introduced default.* and override.* optional
settings in ups.conf, an ups.efficiency report, and
outlet.0 special handling.

AQ

2.6.0

2011-01-14

First release of AsciiDoc documentation for
Network UPS Tools (NUT).

AQ

Network UPS Tools Developer Guide iv

Contents
1 Introduction 1
2 NUT design document 1
2.1 Thelayering e 3
2.2 How information gets around L. e e e e e e e e 4
2.2.1 Fromtheequipment e e e e e e e 4
222 Fromthedriver e 4
223 Fromthe Server o i i e e e 4
2.3 Instantcommands L e e e e e e e e e e e e 4
2.4 Setting variables e e 4
2.5 Exampledatapath. o e e e e 5
2.6 HIiStOry o 6
3 Information for developers 6
3.1 General stuff —common subdirectory L. e e e 6
3.1.1 Stringhandling L e e e e 6
3.1.2 Errorreportingo ..o e e e e e e e e e 7
3.1.3 Debugging information e e e e e e e e 7
3.1.4 Memory allocation e e e 7
3.1.5 Configfileparsing e e 7
3.1.6 <time.h>vs. <sys/time.h> L. e e e e 7
3.2 Device drivers — Main.C v vt v e 7
3.3 Portability L e e 8
33,1 CCOMMENES . . . v v vttt e 8
3.3.2 Variable declarations 0 ONtOP e e e e e e 8
3.3.3 Variable declaration in loop block syntax L e e 8
334 Otherhints e 9
3.4 Continuous Integration and Automated Builds o 9
3.4.1 Build automation tools and SCripts L 9
ci_build.sh e 9
Jenkins CI e e 10
AppVeyor CL . . . L e e e 12
CircleCL. o e 12
Travis CI L o e 12
342 Pre-set warning OptionS i i e e e e e e e e e e e e e e e e e 12
3.5 Integrated Development Environments (IDEs) and debugging NUT 13

3.5.1 IDEnoteson WIndows o 0 i i e e e e s 13

Network UPS Tools Developer Guide v

General settings for builds on Windows 13

GDB on Windows L e e 14

NetBeans on Windows o L e e e e 14

Microsoft VS Code o e e e 16

Intellil IDEA o o e 18

3.6 Codingstyle L e 18
3.6.1 Indenting withtabs vs. spaces e 19

3,62 Linebreaks oL 19

3.6.3 Un-used variables and function arguments 20

3.7 Miscellaneous coding style tools e e e e e 20
3.7.1 Finishing touches e 21

3.7.2 Switch case fall-through 21

37.3 Spaghetti L e e e e e 21

374 Legacycode 22

3775 Memory leak checking L e 22

37.6 Conclusion e e e 22

3.8 Submitting patches L e e e 22
3.9 Patchcohesion e 22
3.10 The finishing touches: manual pages and deviceentry in HCL 22
3.11 Source code management Lot e e e e e e e e e e e e e e e 23
311 GILACCESS « & v v v v v e 23
3.11.2 Mercurial (hg) access e e 23
3.11.3 Subversion (SVIN) access o i e e e e e e e e e e e e e e e 24

3.12 Ignoring generated files L e e e e e 24
3.13 Commit message formatting L. L e e e e 24
3.14 Commitsign-off e 24
3.15 Repository etiquette and quality assurance o v it e e e e e e e e e e e e e 25
3.16 Buildingthe Code e 26
4 Creating a new driver to support another device 27
4.1 Smartvs. Contact-closure L e e e e e e e 27
4.2 Serial vs. USB vs. SNMPandmore e 27
43 Overallconcept 27
4.4 Skeletondriver L e e 28
4.5 Essential Structure e e e e e e 28
451 upsdrv_info_t L e e 28

4.6 Essential functions e e e 28
4.6.1 upsdrv_initups L. e e e e 28

4.6.2 upsdrv_initinfo L e e 28

Network UPS Tools Developer Guide vi

4.7
4.8

4.9

4.10
4.11
4.12

4.13
4.14

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23

4.6.3 upsdrv_updateinfo e e e 29
4.6.4 upsdrv_shutdown e e e e e e 29
Datatypes e 29
Manipulating the data e e e e e 29
4.8.1 Adding variables e e e 29
4.8.2 Setting flags e e e e e 29
4.8.3 Statusdata oL L e e e e 30
UPSalarms e 30
Staleness control L. L e e e e 31
Serial port handling L e e e e 31
USB porthandling L e e e 34
4.12.1 Structure and MACIO« .« o vt e e e e e e e e e e 34
4122 Function e e 35
Variable names L L e e 35
Message passing SUPPOIT o v v v vt e e e e e e e e e e e e e e e 35
4.14.1 SET . . o o e 36
4142 INSTCMD o e e e 36
4143 NOES . . v v i e e e 36
4144 RESPONSES . . o v v v v i v e e e e e e e e e e 36
Enumerated types e e e e e e e e e e e 36
Range values L e 36
Writable Strings o o e e e e e e e e e e e e e e e 37
Instant commands L. e e e e e 37
Delays and ser_* functions e e e e e e e e e e e 37
Canonical input mode proCessing 37
Adding the driverintothe tree L e e e e e e e e 38
Contact closure hardware information oL e 38
4.22.1 Definitions e e e e e e 38
4222 Badlevels oL e e 38
4.22.3 Signals . . .o L e e e e e e e e 38
4.22.4 New gEneriCups tyPES o v v v v v i e e e e e e e e e 39
4.22.5 Custom definitions L e e e 39
How to make a new subdriver to support another USB/HID UPS 39
4.23.1 Overall conCept o e e e e e e e 40
4232 HIDUsageTree L i e 40
4.23.3 Usage macros in drivers/hidtypes.h oo 41
4234 Writingasubdrivero 41
4.23.5 Updatingasubdriver L e e 42

4.23.6 Customization v it e e e e e e e e e e 42

Network UPS Tools Developer Guide vii

4.23.7 Fixing report desCriptors e e e e 43
4.23.8 Investigating report desCriptors o v i i i e e e e e e e e e e e e e e e 43
4239 Shuttingdownthe UPS 45

4.24 How to make a new subdriver to support another SNMP deviceo, 46
4.24.1 Overall concept o o e e e e e e e 46
4242 SNMPdataTree o i i i e e e 46
4243 Creatingasubdriver L e 48
mode 1: get SNMP data fromareal agent 48

mode 2: getdatafromfiles 48

Integrating the subdriver with snmp-ups 49
CUSTOMIZATION e e e e e s e e s s s 49

4.25 How to make a new subdriver to support another Q* UPS 50
4.25.1 Overall concept o o e e e e e e e 50
4252 Creatingasubdriver Lo e e e 50
4253 Writingasubdriverol e 51
4.25.4 Mappinganidiomto NUT e 52
4255 Examples oL 55
Simple vars L e e e e e e e e e e 55

Mandatory VArs o e e e e e e e e e e e e e e e e e e 56

Settable vars L e e 57

Instant commands Ll e e e e 58

Information absentinthedevice L 59

Information not yet available in NUT 59

4.25.6 Support functions L e e e e e e e e e e e 62
4257 Armac Subdriver e e 63
Transferdumps L e 63

4258 NOES . . v v o e e 65

5 Driver/server socket protocol 66
5.1 Formatting o e e e 66
5.2 Commandsused by thedrivers L e 66
5.2.1 SETINFO o e 66

5.22 DELINFO 66

523 ADDENUM . . . e 67

524 DELENUM 67

5.2.5 ADDRANGE 67

5.2.6 DELRANGE e e 67

527 SETAUX 67

5.2.8 SETFLAGS e 67

Network UPS Tools Developer Guide viii
529 ADDCMD 67
5.2.10 DELCMD o e e 68
5.2.11 DUMPDONE e 68
52012 PONG o 68
5.2.13 DATAOK . . . 68
5.2.14 DATASTALE o o e e 68
5.2.15 TRACKING o e 68

5.3 Commands sentbythe server L e e e e 68
531 PING . . 69

532 INSTCMD e 69

5.33 SET . . 69

534 DUMPALL 69

5.3.5 NOBROADCAST e e e e e e 70

5.3.6 BROADCAST (NUM) e e e e e e e e e e 70

54 DeSIZNNOES o v v i e e e e e e e e e e 70
541 Requests o e e e 70

542 Access/Security L e 70

543 Command Imitations oL e e e e e e e e e e e 70

5.4.4 Re-establishing communications o e e e e e 70

6 NUT configuration management with Augeas 70
6.1 Introduction e e e 70
6.2 Requirements e e e e 71
6.2.1 Augeas 71

6.2.2 NUT lenses and modules for Augeas e 71

6.3 CreateatestsandboxX L L e e e 71
6.4 Starttestingand USING L L L. e e e e 71
6.4.1 Shell 72

6.4.2 Python e 73

6.4.3 Perl . . . e 73

6.4.4 Test the conformity testingmodule L 74

6.5 Complete configuration wizard example e e e e 74
7 NUT device discovery 75
7.1 Introduction e 75
7.1.1 Clientaccess library L 75

7.1.2 Configuration helpers L e e e 76

T2 Python o o e 76
7.3 Perl . oo e 76
T4 Java ..o e e e e 76

Network UPS Tools Developer Guide ix
8 Creating new client 76
81 C/CH+ ..o e 77
8.1.1 Clientaccess library e 77
Low-level library: libupsclient o e e 77

High level library: libnutclient e 77

8.1.2 Configuration helpers e 78

82 Python e 78
83 Perl . . 79
84 Java . ..o e e 79
9 Network protocol information 80
9.1 Oldcommandremoval NOtICEe e e e 80
9.2 Commandreference 80
0.3 Revision history L e e 80
9.4 GET 81
9.4.1 NUMLOGINS 81

9.42 UPSDESC e 81

943 VAR . . . 81

944 TYPE . . . o 82

945 DESC . . . o 82

9.4.6 CMDDESC 82

947 TRACKING 83

9.5 LIST . . . 83
9.5.1 UPS . o o 83
9.52 VAR . . L 84

953 RW L 84
954 CMD 84

9.5.5 ENUM . . . 85
956 RANGE 85

9.5.77 CLIENT . . . 86

0.6 SET . . 86
9.6.1 VAR 86

9.6.2 TRACKING 86

9.7 INSTCMD 87
9.8 LOGOUT e e e 87
9.9 LOGIN . . 87
9.10 PRIMARY (since NUT 2.8.0) or MASTER (deprecated) 88
O.11 FSD . . o 88
9.12 PASSWORD 89

Network UPS Tools Developer Guide X
9.13 USERNAME e 89
9.14 STARTTLS e 89
9.15 Othercommands e e e e 90
9.16 Error r€SPONSES . . o . v v v v e i e 90
0.17 Future ideas e e e 91

9.17.1 Dense lists o o L e e e 91
9.17.2 Getcollection e e 92

10 NUT developers tools 92
10.1 Device simulation L e e e e e e 92
10.2 Simulated devices diSCOVETY« o L L e e e e 92
10.3 Device recording oo e e e e e e e e 93

11 NUT core development and maintenance 93
11.1 NUT-specific autoconf macros o v i v v it e i e e e e e e e e e e e e e e e 93
11.2 NUT roadmap and ideas for future expansion ittt 95

11.2.1 Roadmap oo e e 95
2.6 e 95
2 e 95
B30 95
11.2.2 Non-network "upsmon" e e e e e e e 95
11.2.3 Completely unprivileged upsmon e e e 95
11.2.4 Chrooted UpSMON v v v i e e e e e e e e e e e e e e e e e e e 96
11.2.5 Monitor program with interpreted language L oL 96
11.2.6 Sandbox L e 96

A NUT command and variable naming scheme 96
A.l Structured naming L e e e e e e e e e e e e e e e 97
A2 Timeand Date format e e e 97
A3 Variables L 98

A.3.1 device: General unitinformation L. 98
A3.2 wups: General unitinformationol Lo 98
A3.3 input: Incoming line/power information Lo L 100
A.3.4 output: Outgoing power/inverter information L. 101
A.3.5 Three-phase additions L e e e e e 101
Phase Count Determination e e 101
DOMAINS . . . o 101
Specification (SPEC) 101
CONTEXT . . . o e s e e e e 102
Valid CONTEXTS o e e e e e e e e e e s e 102

Network UPS Tools Developer Guide Xi

Valid SPECs e 102

A3.6 EXAMPLES 103
A.3.7 battery: Any battery details L. e 103
A.3.8 ambient: Conditions from external probe equipment L. 105
A.3.9 outlet: Smart outlet management Lo e e e 106
outlet.group: groups of smart outlets e e e 107

A3.10 driver: Internal driver information L. oL e 107
A.3.11 server: Internal server information 108

A4 Instantcommandsl e e e e 108
B NUT daisychain support notes 109
B.1 Introduction e e 109
B.2 Implementation NOtES o L e e e e e e e e e e e e e e e 109
B.2.1 General specification e 109
Devices status handling L e 110

Devices alarms handling L e e e e 110

Example L e e e 110

B.2.2 Information for developers 110

Base support e e e e 111

Templates with multiple definitions e 111

Devices alarms handling e e 111

C NUT libraries complementary information 112
C.l IntroducCtion o it i e e e e e e e e e e e e e 112
C.2 libupsclient-config L L e e e 112
C.3 pkgeonfig SUPPOIt o o o o e e e e e e e e e e e e e e e e 113
C.4 Example configure SCTipt o o o i e e e e e e e e e e e e 113
C.5 Futureconsideration e e e e e 114

C.6 Libtoolinformation e e e 114

Network UPS Tools Developer Guide 1/114

1 Introduction

Two NUT websites

This version of the page reflects NUT release v2.8.2 with codebase commited 440ca2348 at 2024-04-01T22:07:23+02:00
Options, features and capabilities in current development (and future releases) are detailed on the main site and may differ from
ones described here.

NUT is both a powerful toolkit and framework that provides support for Power Devices, such as Uninterruptible Power Supplies,
Power Distribution Units and Solar Controllers.

This document intend to describe how NUT is designed, and the way to develop new device drivers and client applications.

2 NUT design document

Two NUT websites

This version of the page reflects NUT release v2.8.2 with codebase commited 440ca2348 at 2024-04-01T22:07:23+02:00
Options, features and capabilities in current development (and future releases) are detailed on the main site and may differ from
ones described here.

This software is designed around a layered scheme with drivers, a server and clients. These layers communicate with text-based
protocols for easier maintenance and diagnostics.

Network UPS Tools Developer Guide 2/114

Network UPS Tools Developer Guide

2.1 The layering

NMS Other client
(Nagios, Zenoss, ...) integration...

upsmon UpsC upsrw upscmd NUT-monitor

TCP Sockets

UNIX Domain Sockets
or Windows named-pipe

Servers

Other
Power Devices

Devices

Network UPS Tools Developer Guide 4/114

2.2 How information gets around

2.2.1 From the equipment

DRIVERS talk to the EQUIPMENT and receive updates. For most hardware this is polled (DRIVER asks EQUIPMENT about
a variable), but forced updates are also possible. The exact method is not important, as it is abstracted by the driver.

2.2.2 From the driver

The core of all DRIVERS maintains internal storage for every variable that is known along with the auxiliary data for those
variables. It sends updates to this data to any process which connects to the Unix domain socket.

The DRIVERS will also provide a full atomic copy of their internal knowledge upon receiving the "DUMPALL" command on
the socket. The dump is in the same format as updates, and is followed by "DUMPDONE". When "DUMPDONE" has been
received, the view is complete.

The SERVER will connect to the socket of each DRIVER and will request a dump at that time. It retains this data in local storage
for later use. It continues to listen on the socket for additional updates.

This protocol is documented in sock-protocol.txt.

2.2.3 From the server

The SERVER'’s internal storage maintains a complete copy of the data which is in the DRIVER, so it is capable of answering any
request immediately. When a request for data arrives from a CLIENT, the SERVER looks through the internal storage for that
UPS and returns the requested data if it is available.

The format for requests from the CLIENT is documented in protocol.txt.

2.3 Instant commands

"Instant commands" is the term given to a set of actions that result in something happening to the UPS. Some of the common
ones are test .battery.start to initiate a battery test and test .panel. start to test the front panel of the UPS.

They are passed to the SERVER from a CLIENT using an authenticated network connection. The SERVER first checks to make
sure that the instant command is valid for the DRIVER. If it’s supported, a message is sent via a socket to the DRIVER containing
the command and any auxiliary information.

At this point, there is no confirmation to the SERVER of the command’s execution. This is (still) planned for a future release.
This has been delayed since returning a response involves some potentially interesting timing issues. Remember that upsd
services clients in a round-robin fashion, so all queries must be lightweight and speedy.

Note
FIXME: Wasn’'t "TRACKING" mechanism for "INSTCMD/SET VAR" introduced to address just this? See https://github.com/-
networkupstools/nut/pull/659

2.4 Setting variables

Some variables in the DRIVER or EQUIPMENT can be changed, and carry the FLAG_RW flag. Upon receiving a SET command
from the CLIENT, the SERVER first verifies that it is valid for that DRIVER in terms of writability and data type. If those checks
pass, it then sends the SET command through the socket, much like the instant command design.

The DRIVER is expected to commit the value to the EQUIPMENT and update its internal representation of that variable.

Like the instant commands, there is currently no acknowledgement of the command’s completion from the DRIVER. This, too,
is planned for a future release.

sock-protocol.txt
protocol.txt
https://github.com/networkupstools/nut/pull/659
https://github.com/networkupstools/nut/pull/659

Network UPS Tools Developer Guide 5/114

Note
FIXME: Wasn't "TRACKING" mechanism for "INSTCMD/SET VAR" introduced to address just this? See https://github.com/-
networkupstools/nut/pull/659

2.5

Example data path

Here’s the path a piece of data might take through this architecture. The event is a UPS going on battery, and the final result is a
pager delivering the alpha message to the admin.

N o ok

®

. EQUIPMENT reports on battery by setting flag in status register

DRIVER notices this flag and stores it in the ups . status variable as OB. This update gets pushed out to any listeners
via the sockets.

SERVER upsd sees activity on the socket, reads it, parses it, and commits the new data to its local version of the status
variable.

CLIENT upsmon does a routine poll of SERVER for ups. status and gets OB.
CLIENT upsmon then invokes its NOT IFYCMD which is upssched.
upssched starts up a daemon to handle a timer which will expire about 30 seconds into the future.

30 seconds later, the timer expires since the UPS is still on battery, and so upssched calls the CMDSCRIPT which is
upssched-cmd.

upssched-cmd parses the args and calls sendmail.

Avian carriers, smoke signals, SMTP, and some magic result in the message getting from the pager company’s gateway to
a transmitter and then to the admin’s pager.

This scenario requires some configuration, obviously:

1.
2.

There’s an UPS driver running. (Whatever applies for the hardware)
upsd has a valid UPS entry in ups.conf for this UPS.

[myups]
driver = nutupsdrv
port = /dev/ttySx

upsd has a valid user for upsmon in upsd.users file.

[monuser]
password = somepass
upsmon primary

upsmon is set to monitor this UPS with this user in upsmon.conf file.

MONITOR myups@localhost 1 monuser somepass primary

upsmon is set to EXEC the NOTIFYCMD for the ONBATT condition in upsmon.conf file.

NOTIFYFLAG ONBATT EXEC

upsmon calls upssched as the NOTIFYCMD in upsmon.conf file.

NOTIFYCMD /path/to/upssched

https://github.com/networkupstools/nut/pull/659
https://github.com/networkupstools/nut/pull/659

Network UPS Tools Developer Guide 6/114

7. upssched has a 30 second timer for ONBATT in upssched.conf file.

AT ONBATT » START-TIMER upsonbatt 30

8. upssched calls upssched-cmd as the CMDSCRIPT in upssched.conf.

CMDSCRIPT /path/to/upssched-cmd

9. upssched-cmd knows what to do with upsonbatt keyword as its first argument (a quick case. .esac construct,
see the examples)

2.6 History

The oldest versions of this software (1998) had no separation between the driver and the network server, and only supported the
latest APC Smart-UPS hardware as a result. The network protocol used brittle binary structs. This had numerous bad implications
for compatibility and portability.

After the driver and server were separated, data was shared through the state file concept. Status was written into a static array
(the "info array") by drivers, and that array was stored on disk. The upsd would periodically read that file into a local copy of
that array.

Shared memory mode was added a bit later, and that removed some of the lag from the status updates. Unfortunately, it didn’t
have any locking originally, and the possibility for corruption due to races existed.

mmap () support was added at some point after that, and became the default. The drivers and upsd would mmap () the file into
memory and read or write from it. Locking was done using the state file as the token, so contention problems were avoided. This
method was relatively quick, but it involved at least 3 copies of the data (driver, disk/mmap, server) and a whole lot of locking
and unlocking. It could occasionally delay the driver or server when waiting for a lock.

In April 2003, the entire state management subsystem was removed and replaced with a single local socket. The drivers listen
for connections and push updates asynchronously to any listeners. They also recognize a few commands. Drivers also dampen
updates, and only push them out when something actually changes.

As a result, upsd no longer has to poll any files on the disk, and can just select () all of its file descriptors (fds) and wait for
activity. When one of them is active, it reads the fd and parses the results. Updates from the hardware now get to upsd about as
fast as they possibly can.

Drivers used to call setinfo () to change the local array, and then would call writeinfo () to push the array onto the disk,
or into the mmap/shared memory space. This introduced a lag since many drivers poll quite a few variables during an update.

3 Information for developers

Two NUT websites

This version of the page reflects NUT release v2.8.2 with codebase commited 440ca2348 at 2024-04-01T22:07:23+02:00
Options, features and capabilities in current development (and future releases) are detailed on the main site and may differ from
ones described here.

This document is intended to explain some of the more useful things within the tree, and provide a standard for working on the
code.

3.1 General stuff—common subdirectory

3.1.1 String handling

Use snprintf (). It’s even provided with a compatibility module if the target system doesn’t have it natively.

Network UPS Tools Developer Guide 7/114

If you use snprintf () to load some value into a buffer, make sure you provide the format string. Don’t use user-provided
format strings, since that’s an easy way to open yourself up to an exploit.

Don’tuse strcat (). We have a neat wrapper for snprintf () called snprintfcat () that allows you to append to char
= with a format string and all the usual string length checking of snprint £ () routine.

3.1.2 Error reporting

Don’t call syslog () directly. Use upslog_with_errno () and upslogx (). They may write to the syslog, stderr, or
both as appropriate. This means you don’t have to worry about whether you’re running in the background or not.

The upslog_with_errno () routine prints your message plus the string expansion of errno. The upslogx () just prints
the message.

fatal_with_errno () and fatalx () work the same way, but they also exit (EXIT_FAILURE) afterwards. Don’t call
exit () directly.

3.1.3 Debugging information

The upsdebug_with_errno (), upsdebugx (), upsdebug_hex () and upsdebug_ascii () routines use the global
nut_debug_level, so you don’t have to mess around with printf ()’s and i £f’s yourself. Use them.

3.1.4 Memory allocation

xmalloc (), xcalloc (), xrealloc () and xstrdup () all check the results of the base calls before continuing, so you
don’t have to. Don’t use the raw calls directly.

3.1.5 Config file parsing

The configuration parser, called parseconf, is now up to its fourth major version. It has multiple entry points, and can handle
many different jobs. It’s usually used for parsing files, but it can also take input a line at a time or even a character at a time.

You must initialize a context buffer with pconf_init () before using any other parseconf function. pconf_encode ()
is the only exception, since it operates on a buffer you supply and is an auxiliary function.

Escaping special characters and quoting multiple-word elements is all handled by the state machine. Using the same code for all
config files avoids code duplication.

Note
this does not apply to drivers. Driver authors should use the upsdrv_makevartable () scheme to pick up values from
ups.conf file. Drivers should not have their own config files.

Drivers may have their own data files, such as lists of hardware, mapping tables, or similar. The difference between a data file
and a config file is that users should never be expected to edit a data file under normal circumstances. This technique might be
used to add more hardware support to a driver without recompiling.

3.1.6 <time.h> vs. <sys/time.h>

This is already handled by autoconf, so just #include "timehead.h" and you will get the right headers on every system.

3.2 Device drivers —main.c

The device drivers use main. c as their core.

To write a new driver, you create a file with a series of support functions that will be called by main. These all have names that
start with upsdrv_, and they will be called at different times by main depending on what needs to happen.

See the driver documentation for information on writing drivers, and also refer to the skeletal driver in skel. c.

Network UPS Tools Developer Guide 8/114

3.3 Portability

Avoid things that will break on other systems. All the world is not an x86 Linux box.

3.3.1 C comments

There are still older systems out there that don’t do C++ style comments.

/* Comments look like this. x/
// Not like this.

3.3.2 Variable declarations go on top

Newer versions of gcc allow you to declare a variable inside a function after code, somewhat like the way C++ operates, like this:

function do_stuff (void)
{

check_something () ;
int a;

a = do_something_else();

While this will compile and run on these newer versions, it will fail miserably for anyone on an older system. That means you
must not use it.

Note that gcc only warns about this with —-pedantic flag, and clang with a -Weverything (possibly ~-Wextra) flag,
which can be enabled by developers with configure —-enable-warnings=... option values (and made fatal with
configure —--enable-Werror), to ensure non-regression of code quality. It was reported that clang—16 with such
options does complain about non-portability to older C language revisions even if explicitly building for a newer revision.

Please note that for the purposes of legacy-compatible variable declarations (on top of their scopes), a NUT_UNUSED_VARIABLE (var:
counts as code and should be used just below the declarations. Initial assignments to variables (also as return values of methods)
may generally happen as part of their declarations.

You can use scoping (e.g. do { ... } while (0) ;) where it makes sense to constrain visibility of temporary variables,
such as in switch/case blocks.

3.3.3 Variable declaration in loop block syntax

Another feature that does not work on some compilers (e.g. conforming to "ANSI C"/C89/C90 standard) is initial variable
declaration inside a for loop block, like this:

function do_stuff (void)

{
/+ This should declare "int i;" first, then use it in "for" loop: */
for (int i = 0; 1 < INT_MAX; ++i) { ... }

/+ Additional loops cause also an error about re-declaring a variable: =/
for (int i = 10; 1 < 15; ++i) { ... }

Network UPS Tools Developer Guide 9/114

3.3.4 Other hints

Tip
At this point NUT is expected to work correctly when built with a "strict" C99 (or rather GNU99 on many systems) or newer
standard.

The NUT codebase may build in a mode without warnings made fatal on C89 (GNUS89), but the emitted warnings indicate that
those binaries may crash. By the end of 2021, NUT codebase has been revised to pass GNU and strict-C mode builds with C89
standard with the GCC toolkit (and on systems that do have the newer features in libraries, just hide them in standard headers);
however CLANG toolkit is more restrictive about the C99+ syntax used. That said, some systems refuse to expose methods or
types available in their system headers and binary libraries if strict-C mode is used alone, without extra system-specific defines
to enable more than the baseline.

It was also seen that cross-builds (e.g. NUT for Windows using mingw on Linux) may be unable to define WIN32 and/or find
symbols for linking when using a strict-C language standard.

The C support expects Cl1 ornewer (notreally configured or tested for older C98 or C03), modulo features that were
deprecated in later language revisions (C++14 onwards) as highlighted by warnings from newer compilers.

Note also that the NUT codebase currently relies on certain features, such as the printf format modifiers for (s) size_t, use
of long long, some nuances about structure/array initializers, variadic macros for debugging, etc. that a pedantic C90 mode
compilation warns is not part of the standard but a GNU extension (and part of C99 and newer standard revisions). Many of the
"offences" against the older standard actually come from system and third-party header files.

That said, the NUT CI farm does run non-regression builds with GNU C89 and "strict" C89 standard revisions and minimal
passing warnings level, to ensure that codebase is and remains at least basically compliant. We try to cover a few distributions
from early 2000’s for this, either in regular CI builds or one-off local builds for community members with a zoo of old systems.

If somebody in the community actually requires to build and run NUT on systems that old, where newer compilers are not
available, pull requests to fix the offending coding issues in some way that does not break other use-cases are welcome.

3.4 Continuous Integration and Automated Builds

To ease and automate the build scenarios which were deemed important for quality assurance and non-regression checks of NUT,
several solutions were introduced over time.

3.4.1 Build automation tools and scripts

ci_build.sh

This script was originally introduced (following ZeroMQ/ZProject example) to automate CI builds, by automating certain sce-
narios driven by exported environment variables to set particular configure options and make some targets (chosen by the
BUILD_TYPE envvar). It can also be used locally to avoid much typing to re-run those scenarios during development.

Developers can directly use the scripts involved in CI builds to fix existing code on their workstations or to ensure support for
new compilers and C standard revisions, e.g. save a local file like this to call the common script with pre-sets:

$ cat _fightwarn-gcclO-gnul7.sh
#!/bin/sh

BUILD _TYPE=default-all-errors \
CFLAGS="-Wall -Wextra -Werror —-pedantic -std=gnul7" \
CXXFLAGS="-Wall -Wextra -Werror -std=gnu++17" \
CC=gcc-10 CXX=g++-10 \

./ci_build.sh

Network UPS Tools Developer Guide 10/ 114

...and then execute it to prepare a workspace, after which you can go fixing bugs file-by-file running a make after each save to
confirm your solutions and uncover the next issue to address :-)

Helpfully, the NUT CI farm build logs report the configuration used for each executed stage, so if some build combination fails
—you can just scroll to the end of that section and copy-paste the way to reproduce an issue locally (on an OS similar to that
build case).

Note that while spelling out sets of warnings can help in a quest to fix certain bugs during development (if only by removing
noise from classes of warnings not relevant to the issue one is working on), there is a reasonable set of warnings which NUT
codebase actively tries to be clean about (and checks in CI), detailed in the next section.

For the ci_build. sh usage like above, one can instead pass the setting via BUILD_WARNOPT=. . ., and require that all
emitted warnings are fatal for their build, e.g.:

$ cat _fightwarn-clang9-gnull.sh
#!/bin/sh

BUILD_TYPE=default-all-errors \

BUILD_WARNOPT=hard BUILD_WARNFATAL=yes \

CFLAGS="-std=gnull" \

CXXFLAGS="-std=gnu++11" \

CC=clang-9 CXX=clang++-9 CPP=clang-cpp \
./ci_build.sh

Finally, for refactoring effort geared particularly for fighting the warnings which exist in current codebase, the script con-
tains some presets (which would evolve along with codebase quality improvements) as BUILD_TYPE=fightwarn—-gcc,
BUILD_TYPE=fightwarn-clang or plain BUILD_TYPE=fightwarn:

BUILD_TYPE=fightwarn-clang ./ci_build.sh

As arule of thumb, new contributions must not emit any warnings when built in GNU99 mode with aminimal "difficulty" level
of warnings. Technically they must survive the part of test matrix across the several platforms tested by NUT CI and marked in
project settings as required to pass, to be accepted for a pull request merge.

Developers aiming to post successful pull requests to improve NUT can pass the -——enable-warnings option to the configure
script in local builds to see how that behaves and ensure that at least in some set-up their contribution is viable. Note that different
compiler versions and vendors (gcc/clang/...), building against different OS and third-party dependencies, with different CPU
architectures and different language specification revisions, might all complain about different issues — and catching this in as
diverse range of set-ups as possible is why we have CI tests.

It can be beneficial for serial developers to set up a local BuildBot, Travis or a Jenkins instance with a matrix test job, to test their
local git repository branches with whatever systems they have available.

* https://github.com/networkupstools/nut/issues/823

While aut oconf tries its best to provide portable shell code, sometimes there are builds of system shell that just fail under stress.
If you are seeing random failures of . /configure script in different spots with the same inputs, try telling . /ci_build. sh
to loop configuring until success (instead of quickly failing), and/or tell . /configure to use another shell at least for the
system call-outs, with options like these:

SHELL=/bin/bash CONFIG_SHELL=/bin/bash CI_SHELL_ IS FLAKY=true \
./ci_build.sh

Jenkins CI

Since mid-2021, the NUT CI farm is implemented by several virtual servers courteously provided by Fosshost and later by
DigitalOcean.

These run various operating systems as build agents, and a Jenkins instance to orchestrate the builds of NUT branches and pull
requests on those agents.

https://github.com/networkupstools/nut/issues/823
http://fosshost.org
https://www.digitalocean.com/?refcode=d2fbf2b9e082&utm_campaign=Referral_Invite&utm_medium=Referral_Program&utm_source=badge

Network UPS Tools Developer Guide 11/114

This is driven by Jenkinsfile-dynamatrix and a Jenkins Shared Library called jenkins-dynamatrix which prepares a
matrix of builds across as many operating systems, bitnesses/architectures, compilers, make programs and C/C++ revisions as it
can— based on the population of currently available build agents and capabilities which they expose as agent labels.

This hopefully means that people interested in NUT can contribute to the build farm (and ensure NUT is and remains compatible
with their platform) by running a Jenkins Swarm agent with certain labels, which would dial into https://ci.networkupstools.org/
controller. Please contact the NUT maintainer if you want to participate in this manner.

The Jenkinsfile-dynamatrix recipe allows NUT CI farm to run different sets of build scenarios based on various con-
ditions, such as the name of branch being built (or PR’ed against), changed files (e.g. C/C++ sources vs. just docs), and some
build combinations may be not required to succeed.

For example, the main development branch and pull requests against it must cleanly pass all specified builds and tests on various
platforms with the default level of warnings specified in the configure script. These are balanced to not run too many build
scenarios overall, but just a quick and sufficiently representative set.

As another example, there is special handling for "fightwarn" pattern in the branch names to run many more builds with varying
warning levels and more variants of intermediate language revisions, and so expose concerns deliberately missed by default
warnings levels in "master" branch builds (the bar moves over time, as some classes of warnings become extinct from our
codebase).

Further special handling for branches named like fightwarn.*89. regex enables more intensive warning levels for a
GNUS9 build specifically (which are otherwise disabled as noisy yet not useful for supported C99+ builds), and is intended
to help develop fixes for support of this older language revision, if anyone would dare.

Many of those unsuccessful build stages are precisely the focus of the "fightwarn" effort, and are currently marked as "may fail",
so they end up as "UNSTABLE" (seen as orange bubbles in the Jenkins BlueOcean Ul, or orange cells in the tabular list of stages
in the legacy Ul), rather than as "FAILURE" (red bubbles) for build scenarios that were not expected to fail and usually represent
higher-priority problems that would block a PR.

Developers whose PR builds (or attempts to fix warnings) did not succeed in some cell of such build matrix, can look at the
individual logs of that cell. Beside indication from