This version of the page reflects NUT release v2.8.1 with codebase commited 4ba352d8f at 2023-10-31T21:46:20+01:00
Options, features and capabilities in current development (and future releases) are detailed on the main site and may differ from ones described here.
The NUT Team is very interested in providing the highest security level to its users.
Many internal and external mechanisms exist to secure NUT. And several steps are needed to ensure that your NUT setup meets your security requirements.
This chapter will present you these mechanisms, by increasing order of security level. This means that the more security you need, the more mechanisms you will have to apply.
you may want to have a look at NUT Quality Assurance, since some topics are related to NUT security and reliability.
In order to verify the NUT source code signature for releases, perform the following steps:
Retrieve the NUT maintainer’s signature keyring:
$ gpg --fetch-keys https://www.networkupstools.org/source/nut-key.gpg
As of NUT 2.8.0, a new release key is used, but the nut-key.gpg
should
be cumulative with older chain key files (includes them). You can view the key
list in a downloaded copy of the URL above with:
$ gpg --with-colons --import-options import-show --dry-run --import < nut-key.gpg
…and as of this writing, it should contain two key sets for various identities of "Arnaud Quette" and one set of "Jim Klimov".
Just in case, the previous key file used since NUT 2.7.3 release is stored as NUT old maintainer’s signature for 2.7.3-2.7.4 releases
In order to verify an even older release, please use NUT old maintainer’s signature since 2002 until 2.7.3 release
Launch the GPG checking using the following command:
$ gpg --verify nut-X.Y.Z.tar.gz.sig
You should see a message mentioning a "Good signature", with formatting which depends on your gpg version, like:
gpg: Signature made Thu Jun 1 00:10:16 2023 CEST ... gpg: Good signature from "Jim Klimov ..." ... Primary key fingerprint: B834 59F7 76B9 0224 988F 36C0 DE01 84DA 7043 DCF7 ...
The previously used maintainer’s signatures would output (with markup of older gpg tools here):
gpg: Signature made Wed Apr 15 15:55:30 2015 CEST using RSA key ID 55CA5976 gpg: Good signature from "Arnaud Quette ..." ...
or:
gpg: Signature made Thu Jul 5 16:15:05 2007 CEST using DSA key ID 204DDF1B gpg: Good signature from "Arnaud Quette ..." ...
As a weaker but simpler alternative to verifying a signature, you can verify just the accompanying checksums of the source archive file. This is useful primarily to check against bit-rot in original storage or in transit. As far as disclaimers go: ideally, you should cover all provided algorithms — e.g. MD5 and SHA256 — to minimize the chance that intentional malicious tampering on the wire goes undetected. A myriad tools can check that on various platforms; some examples follow:
# Example original checksum to compare with, from NUT website: $ cat nut-2.8.0.tar.gz.sha256 c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5 nut-2.8.0.tar.gz
# Generate checksum of downloaded archive with perl (a NUT build dependency # generally, though you may have to install Digest::SHA module from CPAN): $ perl -MDigest::SHA=sha256_hex -le "print sha256_hex <>" nut-2.8.0.tar.gz c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5
# Generate checksum of downloaded archive with openssl (another optional # NUT build dependency): $ openssl sha256 nut-2.8.0.tar.gz SHA256(nut-2.8.0.tar.gz)= c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5
# Generate checksum of downloaded archive with coreutils: $ sha256sum nut-2.8.0.tar.gz c3e5a708da797b7c70b653d37b1206a000fcb503b85519fe4cdf6353f792bfe5 nut-2.8.0.tar.gz
# Auto-check downloaded checksum against downloaded archive with coreutils: $ sha256sum -c nut-2.8.0.tar.gz.sha256 nut-2.8.0.tar.gz: OK
# Generate checksum of downloaded archive with GPG: $ gpg --print-md SHA256 nut-2.8.0.tar.gz nut-2.8.0.tar.gz: C3E5A708 DA797B7C 70B653D3 7B1206A0 00FCB503 B85519FE 4CDF6353 F792BFE5
All configuration files should be protected so that the world can’t read them. Use the following commands to accomplish this:
chown root:nut /etc/nut/* chmod 640 /etc/nut/*
Finally, the state path directory, which holds the
communication between the driver(s) and upsd
, should also be secured.
chown root:nut /var/state/ups chmod 0770 /var/state/ups
Administrative commands such as setting variables and the instant commands are powerful, and access to them needs to be restricted.
NUT provides an internal mechanism to do so, through upsd.users(5).
This file defines who may access instant commands and settings, and what is available.
During the initial
NUT user creation, we have created a
monitoring user for upsmon
.
You can also create an administrator user with full power using:
[administrator] password = mypass actions = set instcmds = all
For more information on how to restrict actions and instant commands, refer to upsd.users(5) manual page.
NUT administrative user definitions should be used in conjunction with TCP Wrappers.
If you are not using NUT on a standalone setup, you will need to enforce
network access to upsd
.
There are various ways to do so.
LISTEN interface port
Bind a listening port to the interface specified by its Internet address. This may be useful on hosts with multiple interfaces. You should not rely exclusively on this for security, as it can be subverted on many systems.
Listen on TCP port port
instead of the default value which was compiled into
the code. This overrides any value you may have set with configure
--with-port
. If you don’t change it with configure or this value, upsd
will
listen on port 3493 for this interface.
Multiple LISTEN addresses may be specified. The default is to bind to
127.0.0.1
if no LISTEN addresses are specified (and ::1
if IPv6 support is
compiled in).
LISTEN 127.0.0.1 LISTEN 192.168.50.1 LISTEN ::1 LISTEN 2001:0db8:1234:08d3:1319:8a2e:0370:7344
As a special case, LISTEN * <port>
(with an asterisk) will try to
listen on "ANY" IP address for both IPv6 (::0
) and IPv4 (0.0.0.0
),
subject to upsd
command-line arguments, or system configuration or support.
Note that if the system supports IPv4-mapped IPv6 addressing per RFC-3493,
and does not allow to disable this mode, then there may be one listening
socket to handle both address families.
This parameter will only be read at startup. You’ll need to restart (rather
than reload) upsd
to apply any changes made here.
NUT has its own official IANA port: 3493/tcp.
The upsmon
process on secondary systems, as well as any other NUT client
(such as upsc
, upscmd
, upsrw
, NUT-Monitor, …) connects to the upsd
process on the system which manages the UPS, via this TCP port. Usually an
upsmon
process runs on the latter system in "primary" mode for the devices
connected to it.
The upsd
process does not initiate outgoing connections.
Certain NUT drivers (for network-managed devices) can initiate their own connections to various ports according to corresponding vendor protocol.
You should use this to restrict network access.
NUT can tightly integrate with Uncomplicated Firewall using the provided profile (nut.ufw.profile).
You must first install the profile on your system:
$ cp nut.ufw.profile /etc/ufw/applications.d/
To enable outside access to your local upsd, use:
$ ufw allow NUT
To restrict access to the network 192.168.X.Y, use:
$ ufw allow from 192.168.0.0/16 to any app NUT
You can also use graphical frontends, such as gui-ufw (gufw), ufw-kde or ufw-frontends.
For more information, refer to:
If the server is build with tcp-wrappers support enabled, it will check if the
NUT username is allowed to connect from the client address through the
/etc/hosts.allow
and /etc/hosts.deny
files.
this will only be done for commands that require the user to be logged into the server.
hosts.allow
:
upsd : admin@127.0.0.1/32 upsd : observer@127.0.0.1/32 observer@192.168.1.0/24
hosts.deny
:
upsd : ALL
Further details are described in hosts_access(5).
SSL is available as a build option (--with-ssl
).
It encrypts sessions between upsd and clients, and can also be used to authenticate servers.
This means that stealing port 3493 from upsd will no longer net you interesting passwords.
Several things must happen before this will work, however. This chapter will present these steps.
SSL is available via two back-end libraries : NSS and OpenSSL (historically).
You can choose to use one of them by specifying it with a build option
(--with-nss
or --with-openssl
). If neither is specified, the configure
script will try to detect one of them, with a precedence for OpenSSL.
This section describes how to enable NUT SSL support using OpenSSL.
Install OpenSSL as usual, either from source or binary packages. If using binary packages, be sure to include the developer libraries.
Recompile NUT from source, starting with configure --with-openssl
.
Then install everything as usual.
openssl (the program) should be in your PATH, unless you installed it from
source yourself, in which case it may be in /usr/local/ssl/bin
.
Use the following command to create the certificate:
openssl req -new -x509 -nodes -out upsd.crt -keyout upsd.key
You can also put a -days nnn
in there to set the expiration. If
you skip this, it may default to 30 days. This is probably not what
you want.
It will ask several questions. What you put in there doesn’t matter a whole lot, since nobody is going to see it for now. Future versions of the clients may present data from it, so you might use this opportunity to identify each server somehow.
Use the following command to determine the hash of the certificate:
openssl x509 -hash -noout -in upsd.crt
You’ll get back a single line with 8 hex characters. This is the hash of the certificate, which is used for naming the client-side certificate. For the purposes of this example the hash is 0123abcd.
Use the following commands to install the client-side certificate:
mkdir <certpath> chmod 0755 <certpath> cp upsd.crt <certpath>/<hash>.0
Example:
mkdir /usr/local/ups/etc/certs chmod 0755 /usr/local/ups/etc/certs cp upsd.crt /usr/local/ups/etc/certs/0123abcd.0
If you already have a file with that name in there, increment the 0 until you get a unique filename that works.
If you have multiple client systems (like upsmon instances in secondary mode), be sure to install this file on them as well.
We recommend making a directory under your existing confpath to keep everything in the same place. Remember the path you created, since you will need to put it in upsmon.conf later.
It must not be writable by unprivileged users, since someone could insert a new client certificate and fool upsmon into trusting a fake upsd.
To do so, use the below commands:
cat upsd.crt upsd.key > upsd.pem chown root:nut upsd.pem chmod 0640 upsd.pem
This file must be kept secure, since anyone possessing it could pretend to be upsd and harvest authentication data if they get a hold of port 3493.
Having it be owned by root and readable by group nut allows upsd to read the file without being able to change the contents. This is done to minimize the impact if someone should break into upsd. NUT reads the key and certificate files after dropping privileges and forking.
There are probably other ways to handle this, involving keys which have been signed by a CA you recognize. Contact your local SSL guru.
Install the certificate with the following command:
mv upsd.pem <upsd certfile path>
Example:
mv upsd.pem /usr/local/ups/etc/upsd.pem
After that, edit your upsd.conf
and tell it where to find it:
CERTFILE /usr/local/ups/etc/upsd.pem
It should come back up without any complaints. If it says something about keys or certificates, then you probably missed a step.
If you run upsd as a separate user id (like nutsrv), make sure that user can read the upsd.pem file.
Edit your upsmon.conf, and tell it where the CERTPATH is:
CERTPATH <path>
Example:
CERTPATH /usr/local/ups/etc/certs
Put this in upsmon.conf:
CERTVERIFY 1
Without this, there is no guarantee that the upsd is the right host. Enabling this greatly reduces the risk of man in the middle attacks.
This effectively forces the use of SSL, so don’t use this unless all of your upsd hosts are ready for SSL and have their certificates in order.
Again in upsmon.conf:
FORCESSL 1
If you don’t use CERTVERIFY 1
, then this will at least make sure
that nobody can sniff your sessions without a large effort. Setting
this will make upsmon drop connections if the remote upsd doesn’t
support SSL, so don’t use it unless all of them have it running.
This section describes how to enable NUT SSL support using Mozilla NSS.
Install Mozilla NSS
as usual, either from source or binary packages. If using binary packages,
be sure to include the developer libraries, and nss-tools (for certutil
).
Recompile NUT from source, starting with configure --with-nss
.
Then install everything as usual.
NSS (package generally called libnss3-tools) will install a tool called
certutil
.
It will be used to generate certificates and manage certificate database.
Certificates should be signed by a certification authorities (CAs). Following commands are typical samples, contact your SSL guru or security officer to follow your company procedures.
Generate a server certificate for upsd:
mkdir cert_db
certutil -N -d cert_db
certutil -A -d cert_db -n "My Root CA" -t "TC,," -a -i rootca.crt
certutil -R -d cert_db -s "CN=My nut server,O=MyCompany,ST=MyState,C=US" -a -o server.req
certutil -A -d cert_db -n "My nut server" -a -i server.crt -t ",,"
certutil -L -d cert_db
Clients and servers in the same host could share the same certificate to authenticate them or use different ones in same or different databases. The same operation can be done in same or different databases to generate other certificates.
NSS provides a way to create self-signed certificate which can acting as CA certificate, and to sign other certificates with this CA certificate. This method can be used to provide a CA certification chain without using an "official" certificate authority.
Generate a self-signed CA certificate:
mkdir CA_db
certutil -N -d CA_db
certutil -S -d CA_db -n "My Root CA" -s "CN=My CA,O=MyCompany,ST=MyState,C=US" -t "CT,," -x -2
(Do not forget to answer Yes to the question Is this a CA certificate [y/N]?)
certutil -L -d CA_db -n "My Root CA" -a -o rootca.crt
certutil -C -d CA_db -c "My Root CA" -a -i server.req -o server.crt -2 -6
Just copy the database directory (just the directory and included 3
database .db files) to the right place, such as /usr/local/ups/etc/
:
mv cert_db /usr/local/ups/etc/
Edit the upsd.conf to tell where find the certificate database:
CERTPATH /usr/local/ups/etc/cert_db
Also tell which is the certificate to send to clients to authenticate itself and the password to decrypt private key associated to certificate:
CERTIDENT 'certificate name' 'database password'
Generally, the certificate name is the server domain name, but is not a hard rule. The certificate can be named as useful.
This functionality is disabled by default. To activate it, recompile
NUT with WITH_CLIENT_CERTIFICATE_VALIDATION
defined:
make CFLAGS="-DWITH_CLIENT_CERTIFICATE_VALIDATION"
UPSD can accept three levels of client authentication. Just specify it with
the directive CERTREQUEST
with the corresponding value in the upsd.conf
file:
Like CA certificates, you can add many trusted client and CA certificates in server’s certificate databases.
In order for upsmon to securely connect to upsd, it must authenticate it. You must associate an upsd host name to security rules in upsmon.conf with the directive CERTHOST.
CERTHOST associates a hostname to a certificate name. It also determines whether a SSL connection is mandatory, and if the server certificate must be validated.
CERTHOST 'hostname' 'certificate name' 'certverify' 'forcessl'
If the flag forcessl
is set to 1
, and upsd answers that it can not
connect with SSL, the connection closes.
If the flag certverify
is set to 1
and the connection is done in SSL,
upsd’s certificate is verified and its name must be the specified
certificate name.
To prevent security leaks, you should set all certverify
and forcessl
flags to 1
(force SSL connection and validate all certificates for all
peers).
You can specify CERTVERIFY
and FORCESSL
directive (to 1
or 0
) to
define a default security rule to apply to all host not specified with a
dedicated CERTHOST
directive.
If a host is not specified in a CERTHOST
directive, its expected certificate
name is its hostname.
Like upsd, upsmon may need to authenticate itself (upsd’s CERTREQUEST
directive set to REQUEST
or REQUIRE
).
It must access to a certificate (and its private key) in a certificate
database configuring CERTPATH
and CERTIDENT
in upsmon.conf in the
same way as upsd.
CERTPATH /usr/local/ups/etc/cert_db CERTIDENT 'certificate name' 'database password'
It should come back up without any complaints. If it says something about keys or certificates, then you probably missed a step.
If you run upsd as a separate user ID (like nutsrv), make sure that user can read files in the certificate directory. NUT reads the keys and certificates after forking and dropping privileges.
You should see something like this in the syslog from upsd:
foo upsd[1234]: Client mon@localhost logged in to UPS [myups] (SSL)
If upsd or upsmon give any error messages, or the (SSL)
is missing,
then something isn’t right.
If in doubt about upsmon, start it with -D so it will stay in the foreground and print debug messages. It should print something like this every couple of seconds:
polling ups: myups@localhost [SSL]
Obviously, if the [SSL]
isn’t there, something’s broken.
Using tcpdump, Wireshark (Ethereal), or another network sniffer tool,
tell it to monitor port 3493/tcp and see what happens. You should only
see STARTTLS
go out, OK STARTTLS
come back, and the rest will be
certificate data and then seemingly random characters.
If you see any plaintext besides that (USERNAME, PASSWORD, etc.) then something is not working.
If you specify a certificate expiration date, you will eventually see things like this in your syslog:
Oct 29 07:27:25 rktoy upsmon[3789]: Poll UPS [for750@rktoy] failed - SSL error: error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE: certificate verify failed
You can verify that it is expired by using openssl to display the date:
openssl x509 -enddate -noout -in <certfile>
It’ll display a date like this:
notAfter=Oct 28 20:05:32 2002 GMT
If that’s after the current date, you need to generate another cert/key pair using the procedure above.
SSL support should be considered stable but purposely under-documented since various bits of the implementation or configuration may change in the future. In other words, if you use this and it stops working after an upgrade, come back to this file to find out what changed.
This is why the other documentation doesn’t mention any of these directives yet. SSL support is a treat for those of you that RTFM.
There are also potential licensing issues for people who ship binary packages since NUT is GPL and OpenSSL is not compatible with it. You can still build and use it yourself, but you can’t distribute the results of it. Or maybe you can. It depends on what you consider "essential system software", and some other legal junk that we’re not going to touch.
Other packages have solved this by explicitly stating that an exception has been granted. That is (purposely) impossible here, since NUT is the combined effort of many people, and all of them would have to agree to a license change. This is actually a feature, since it means nobody can unilaterally run off with the source — not even the NUT team.
Note that the replacement of OpenSSL by Mozilla Network Security Services (NSS) should avoid the above licensing issues.
It has been possible to run the drivers and upsd in a chrooted jail for some time, but it involved a number of evil hacks. From the 1.3 series, a much saner chroot behavior exists, using BIND 9 as an inspiration.
The old way involved creating an entire tree, complete with libraries, a shell (!), and many auxiliary files. This was hard to maintain and could have become an interesting playground for an intruder. The new way is minimal, and leaves little in the way of usable materials within the jail.
This document assumes that you already have created at least one user account for the software to use. If you’re still letting it fall back on "nobody", stop right here and go figure that out first. It also assumes that you have everything else configured and running happily all by itself.
Essentially, you need to create your configuration directory and state path in their own little world, plus a special device or two.
For the purposes of this example, the chroot jail is /chroot/nut
. The
programs have been built with the default prefix, so they are using
/usr/local/ups
. First, create the confpath and bring over a few files.
mkdir -p /chroot/nut/usr/local/ups/etc cd /chroot/nut/usr/local/ups/etc cp -a /usr/local/ups/etc/upsd.users . cp -a /usr/local/ups/etc/upsd.conf . cp -a /usr/local/ups/etc/ups.conf .
We’re using cp -a to maintain the permissions on those files.
Now bring over your state path, maintaining the same permissions as before.
mkdir -p /chroot/nut/var/state cp -a /var/state/ups /chroot/nut/var/state
Next we must put /etc/localtime
inside the jail, or you may get very
strange readings in your syslog. You’ll know you have this problem if
upsd
shows up as UTC in the syslog while the rest of the system doesn’t.
mkdir -p /chroot/nut/etc cp /etc/localtime /chroot/nut/etc
Note that this is not cp -a
, since we want to copy the content, not
the symlink that it may be on some systems.
Finally, create a tiny bit of /dev
so the programs can enter the
background properly — they redirect file descriptors into the bit
bucket to make sure nothing else grabs fds 0-2.
mkdir -p /chroot/nut/dev cp -a /dev/null /chroot/nut/dev
Try to start your driver(s) and make sure everything fires up as before.
upsdrvctl -r /chroot/nut -u nutdev start
Once your drivers are running properly, try starting upsd
.
upsd -r /chroot/nut -u nutsrv
Check your syslog. If nothing is complaining, try running clients like
upsc
and upsmon
. If they seem happy, then you’re done.
After you do this, you will have two copies of many things, like the
confpath and the state path. I recommend deleting the real
/var/state/ups
, replacing it with a symlink to
/chroot/nut/var/state/ups
. That will let other programs reference the
.pid
files without a lot of hassle.
You can also do this with your confpath and point /usr/local/ups/etc
(or
equivalent on your system) at /chroot/nut/usr/local/ups/etc
unless you’re
worried about something hurting the files inside that directory. In that
case, you should maintain a golden copy and push it into the chroot path
after making changes.
The upsdrvctl
itself does not chroot, so the ups.conf
still needs to be
in the usual confpath.
This has not yet been applied to upsmon, since it can be quite complicated when there are notifiers that need to be run. One possibility would be for upsmon to have three instances:
This one is messy, and may not happen for some time, if ever.